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Motivation

(Non)Overlapping Community Detection

Node Representation Learning
● MF
● LINE
● DeepWalk
● Node2vec



Motivation

(Overlapping) Community Detection

Community Preserving 
Network Embedding Clustering (i.e. K-Means)

Using Node Embeddings  
as feature

Node Representation Learning
● MF
● LINE
● DeepWalk
● Node2vec
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vGraph - probabilistic generative model

For each node w, draw a latent variable (community assignment) z ~ p(z|w) 

based on the latent variable, Generate linked neighbor c ~ p(c|z)





vGraph - Variational Inference
● Approximate posterior: 

● ELBO (evidence lower bound):



vGraph - Variational Inference
● Approximate posterior: 

● ELBO (evidence lower bound):

● Variational optimization (obtain gradients) → z is discrete → 

Gumbel Softmax (straight-through gradient estimator) !



Implementation

Two set of node 
embeddings

Community 
embeddings

:

:



Implementation

: Softmax of node embedding over community embeddings

: Softmax of community embedding over node embeddings

: Softmax of                    over community embeddings



Infer overlapping communities



Infer overlapping communities



vGraph - Community-smoothness Regularization



vGraph - hierarchical extension





vGraph - hierarchical extension
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Evaluation of community detection
● Normalized Mutual Information
● Modularity (w/o ground truth)
● F1-score
● Jaccard Index



Non-overlapping community detection & Node classification



Overlapping community detection



Visualization



Conclusion
● Motivation 

○ community information is important for node 
■ model nodes as mixture of communities

○ community detection can use node embedding as features
■ Model communities as multinomial distribution over nodes  

● vGraph: Generative model with Variational Inference & (stochastic) gradient 
descent

○ Bayesian inference
○ MCMC

● Efficient & Scalable → O( d * |E| * K ) 
○ d: embedding dimension
○ K: number of communities



Thanks! 
Arvix Full paper: https://arxiv.org/pdf/1906.07159.pdf
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