vGraph: A Generative Model for Joint Community Detection and Node Representation Learning

Fan-Yun Sun, Meng Qu, Jordan Hoffmann, Chin-Wei Huang, Jian Tang

NeurIPS 2019

Agenda

- Motivation
- vGraph
- Experiments

Agenda

- Motivation
- vGraph
- Experiments

Motivation

(Non)Overlapping Community Detection

Node Representation Learning

- MF
- LINE
- DeepWalk
- Node2vec

Motivation

(Overlapping) Community Detection

Community Preserving Network Embedding

Clustering (i.e. K-Means) Using Node Embeddings as feature

Node Representation Learning

- MF
- LINE
- DeepWalk
- Node2vec

https://epasto.org/papers/www2019splitter.pdf

Agenda

• Motivation

• vGraph

- Hierarchical vGraph
- Experiments

vGraph - probabilistic generative model

For each node w, draw a latent variable (community assignment) $z \sim p(z|w)$

based on the latent variable, Generate linked neighbor $c \sim p(c|z)$

$$p(c|w) = \sum_{z} p(c|z)p(z|w).$$

(a) vGraph

Variational Inference Recipe

- Start with data X and a model p(z, x), we are interested in p(z | x)
- Choose a variational approximation q(z | x; v) (approximate posteriors)
- By maximizing likelihood log p(X), we derive ELBO

$$\mathcal{L}(\boldsymbol{\nu}) = \mathbb{E}_{q(\mathbf{z};\boldsymbol{\nu})}[\log p(\mathbf{x}, \mathbf{z}) - \log q(\mathbf{z}; \boldsymbol{\nu})]$$

How to obtain gradients? (variational optimization)

Example Using Gaussian mixture Model: https://zhiyzuo.github.io/VI/#general-situation

vGraph - Variational Inference

• Approximate posterior:

• ELBO (evidence lower bound):

$$\mathcal{L} = E_{z \sim q(z|c,w)}[\log p_{\psi,\varphi}(c|z)] - \mathrm{KL}(q(z|c,w)||p_{\phi,\psi}(z|w))$$

vGraph - Variational Inference

• Approximate posterior:

• ELBO (evidence lower bound):

$$\mathcal{L} = E_{z \sim q(z|c,w)}[\log p_{\psi,\varphi}(c|z)] - \mathrm{KL}(q(z|c,w)||p_{\phi,\psi}(z|w))$$

• Variational optimization (obtain gradients) \rightarrow z is discrete \rightarrow

Gumbel Softmax (straight-through gradient estimator) !

Implementation

$$\mathcal{L} = E_{z \sim q(z|c,w)} [\log p_{\psi,\varphi}(c|z)] - \mathrm{KL}(q(z|c,w)| p_{\phi,\psi}(z|w))$$

$$q_{\boldsymbol{\phi},\boldsymbol{\psi}}(z=j|w,c) = \frac{\exp((\boldsymbol{\phi}_w \odot \boldsymbol{\phi}_c)^T \boldsymbol{\psi}_j)}{\sum_{i=1}^{K} \exp((\boldsymbol{\phi}_w \odot \boldsymbol{\phi}_c)^T \boldsymbol{\psi}_i)}.$$

$$p_{\boldsymbol{\phi},\boldsymbol{\psi}}(z=j|w) = \frac{\exp(\boldsymbol{\phi}_{w}^{T}\boldsymbol{\psi}_{j})}{\sum_{i=1}^{K}\exp(\boldsymbol{\phi}_{w}^{T}\boldsymbol{\psi}_{i})},$$
$$p_{\boldsymbol{\psi},\boldsymbol{\varphi}}(c|z=j) = \frac{\exp(\boldsymbol{\psi}_{j}^{T}\boldsymbol{\varphi}_{c})}{\sum_{c'\in\mathcal{V}}\exp(\boldsymbol{\psi}_{j}^{T}\boldsymbol{\varphi}_{c'})}.$$

$$oldsymbol{\phi}_i \, oldsymbol{arphi}_i : extsf{Two set of node} \ extsf{embeddings} \ oldsymbol{\psi}_j : extsf{Community} \ extsf{embeddings} \ extsf{embeddings} \ oldsymbol{\psi}_j \ oldsymbol{embeddings} \ oldsymbol{arphi}_j \ oldsymbol{embeddings} \ oldsymbol{arphi}_j \ oldsymbol{ar$$

Implementation

$$\mathcal{L} = E_{z \sim q(z|c,w)} [\log p_{\psi,\varphi}(c|z)] - \mathrm{KL}(q(z|c,w)||p_{\phi,\psi}(z|w))$$

$$p_{\phi,\psi}(z=j|w)$$

: Softmax of node embedding over community embeddings

$$p_{\psi,\varphi}(c|z=j)$$

: *Softmax* of community embedding over node embeddings

$$q_{\pmb{\phi},\pmb{\psi}}(z=j|w,c)$$

: Softmax of $\phi_w \odot \phi_c$ over community embeddings

 $\mathcal{F}(w) = \{ \arg\max_{k} q(z=k|w,c) \}_{c \in N(w)}.$

Infer overlapping communities

Infer overlapping communities

vGraph - Community-smoothness Regularization

$$\mathcal{L}_{reg} = \lambda \sum_{(w,c)\in\mathcal{E}} \alpha_{w,c} \cdot \underline{d(p(z|c), p(z|w))}$$
$$\int_{w,c} \alpha_{w,c} = \frac{|N(w) \cap N(c)|}{|N(w) \cup N(c)|},$$

vGraph - hierarchical extension

$$p(c|w) = \sum_{z} p(c|z)p(z|w).$$

$$p_{\phi,\varphi,\psi}(c|w) = \sum_{\vec{z}} p_{\phi,\psi}(c|\vec{z})p_{\phi,\psi}(\vec{z}|w).$$

vGraph - hierarchical extension

(a) vGraph

(b) Hierarchical vGraph

Agenda

- Motivation
- vGraph
 - Community-smoothness Regularization
 - Hierarchical vGraph

• Experiments

- Non-overlapping community detection & Node classification
- Overlapping community detection
- Visualization

Evaluation of community detection

- Normalized Mutual Information
- Modularity (w/o ground truth)
- F1-score
- Jaccard Index

Non-overlapping community detection & Node classification

Table 3: Evaluation (in terms of NMI and Modularity) on networks with non-overlapping ground-truth communities.

NMI								Modularity						
Dataset	MF	deepwalk	LINE	node2vec	ComE	vGraph	MF	deepwalk	LINE	node2vec	ComE	vGraph		
cornell	0.0632	0.0789	0.0697	0.0712	0.0732	0.0803	0.4220	0.4055	0.2372	0.4573	0.5748	0.5792		
texas	0.0562	0.0684	0.1289	0.0655	0.0772	0.0809	0.2835	0.3443	0.1921	0.3926	0.4856	0.4636		
washington	0.0599	0.0752	0.0910	0.0538	0.0504	0.0649	0.3679	0.1841	0.1655	0.4311	0.4862	0.5169		
wisconsin	0.0530	0.0759	0.0680	0.0749	0.0689	0.0852	0.3892	0.3384	0.1651	0.5338	0.5500	0.5706		
cora	0.2673	0.3387	0.2202	0.3157	0.3660	0.3445	0.6711	0.6398	0.4832	0.5392	0.7010	0.7358		
citeseer	0.0552	0.1190	0.0340	0.1592	0.2499	0.1030	0.6963	0.6819	0.4014	0.4657	0.7324	0.7711		

Table 4: Results of node classification on 6 datasets.

Macro-F1								Micro-F1						
Datasets	MF	DeepWalk	LINE	Node2Vec	ComE	vGraph	MF	DeepWalk	LINE	Node2Vec	ComE	vGraph		
Cornell	13.05	22.69	21.78	20.70	19.86	29.76	15.25	33.05	23.73	24.58	25.42	37.29		
Texas	8.74	21.32	16.33	14.95	15.46	26.00	14.03	40.35	27.19	25.44	33.33	47.37		
Washington	15.88	18.45	13.99	21.23	15.80	30.36	15.94	34.06	25.36	28.99	33.33	34.78		
Wisconsin	14.77	23.44	19.06	18.47	14.63	29.91	18.75	38.75	28.12	25.00	32.50	35.00		
Cora	11.29	13.21	11.86	10.52	12.88	16.23	12.79	22.32	14.59	27.74	28.04	24.35		
Citeseer	14.59	16.17	15.99	16.68	12.88	17.88	15.79	19.01	16.80	20.82	19.42	20.42		

Overlapping community detection

F1-score								Jaccard						
Dataset	Bigclam	CESNA	Circles	SVI	vGraph	vGraph+	Bigclam	CESNA	Circles	SVI	vGraph	vGraph+		
facebook0	0.2948	0.2806	0.2860	0.2810	0.2440	0.2606	0.1846	0.1725	0.1862	0.1760	0.1458	0.1594		
facebook107	0.3928	0.3733	0.2467	0.2689	0.2817	0.3178	0.2752	0.2695	0.1547	0.1719	0.1827	0.2170		
facebook1684	0.5041	0.5121	0.2894	0.3591	0.4232	0.4379	0.3801	0.3871	0.1871	0.2467	0.2917	0.3272		
facebook1912	0.3493	0.3474	0.2617	0.2804	0.2579	0.3750	0.2412	0.2394	0.1672	0.2010	0.1855	0.2796		
facebook3437	0.1986	0.2009	0.1009	0.1544	0.2087	0.2267	0.1148	0.1165	0.0545	0.0902	0.1201	0.1328		
facebook348	0.4964	0.5375	0.5175	0.4607	0.5539	0.5314	0.3586	0.4001	0.3927	0.3360	0.4099	0.4050		
facebook3980	0.3274	0.3574	0.3203	NA	0.4450	0.4150	0.2426	0.2645	0.2097	NA	0.3376	0.2933		
facebook414	0.5886	0.6007	0.4843	0.3893	0.6471	0.6693	0.4713	0.4732	0.3418	0.2931	0.5184	0.5587		
facebook686	0.3825	0.3900	0.5036	0.4639	0.4775	0.5379	0.2504	0.2534	0.3615	0.3394	0.3272	0.3856		
facebook698	0.5423	0.5865	0.3515	0.4031	0.5396	0.5950	0.4192	0.4588	0.2255	0.3002	0.4356	0.4771		
Youtube	0.4370	0.3840	0.3600	0.4140	0.5070	0.5220	0.2929	0.2416	0.2207	0.2867	0.3434	0.3480		
Amazon	0.4640	0.4680	0.5330	0.4730	0.5330	0.5320	0.3505	0.3502	0.3671	0.3643	0.3689	0.3693		
Dblp	0.2360	0.3590	NA	NA	0.3930	0.3990	0.1384	0.2226	NA	NA	0.2501	0.2505		
Coauthor-CS	0.3830	0.4200	NA	0.4070	0.4980	0.5020	0.2409	0.2682	NA	0.2972	0.3517	0.3432		

Visualization

Conclusion

- Motivation
 - community information is important for node
 - model nodes as mixture of communities
 - community detection can use node embedding as features
 - Model communities as multinomial distribution over nodes
- vGraph: Generative model with Variational Inference & (stochastic) gradient descent
 - Bayesian inference
 - ○ MCMC
- Efficient & Scalable $\rightarrow O(d * |E| * K)$
 - d: embedding dimension
 - K: number of communities

Thanks!

Arvix Full paper: https://arxiv.org/pdf/1906.07159.pdf

Reference (figures):

https://www.google.com/url?sa=i&source=images&cd=&ved=2ahUKEwie7-PqsLbkAhVMHTQIHdHEDW4QjRx6BAgBEAQ&url=https%3A%2F%2Fbigdata.oden.utexas.edu%2Fproject%2 Fgraph-clustering%2F&psig=AOvVaw2w8OQzTar0QIHqKYxNQc_8&ust=1567659483561269

https://www.semanticscholar.org/paper/Representation-Learning-on-Graphs%3A-Methods-and-Hamilton-Ying/ecf6c42d84351f34e1625a6a2e4cc6526da45c74/figure/4

https://www.google.com/url?sa=i&source=images&cd=&ved=2ahUKEwj4-pKOwLbkAhX0KDQIHci-DEEQjRx6BAgBEAQ&url=https%3A%2F%2Fwww.researchgate.net%2Ffigure%2FVis ualization-of-edge-clustering-using-a-subset-of-DBLP-with-95-instances-Edges-are_fig2_313422448&psig=AOvVaw0j2v8wHOpfuIUCPz-EOGxN&ust=1567663587564454